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J. Phys. A: Math. Gen. 19 (1986) 629-638. Printed in Great Britain 

On Dirac’s conjecture €or systems having only first-class 
constraints 

Alejandro Cab0 
Instituto de Matematica, CibernCtica y Computacion, Academia de Ciencias de Cuba, 
Calle 0 No 8, Vedado, La Habana, Cuba 

Received 10 April 1985 

Abstract. Dirac’s conjecture is proved for a general class of systems having only first-class 
constraints. In other words it is shown for that kind of problem that all the primary or 
secondary first-class constraints generate equivalence transformations between physical 
states. 

1. Introduction 

Dirac’s generalised canonical formalism (Dirac 1950, 1964) plays at present a relevant 
role in modern quantum field theory. By using it, many of the central problems which 
have appeared in the development of the quantisation procedures of the gauge and 
gravitational fields have been solved (Faddeev 1970, Fradkin and Vilkovisky 1975). 
The method has been further perfected to a great extent to make it applicable not only 
to real and complex fields (bosonic fields) but also to fields which take values in 
Grassmann algebras (fermionic fields) (Casalbuoni 1976). 

At the same time, by starting from this procedure, path integral quantisation schemes 
for systems having arbitrary numbers of first- a n d  second-class constraints have been 
created (Batalin and Vilkovisky 1977, Fradkin and Fradkina 1978). 

However, in spite of these general achievements some basic problems in this theory 
are still widely discussed in the literature. One of them is related to the equivalence 
between Dirac’s procedure in terms of the extended Hamiltonian and the Lagrangian 
description (Cawley 1979, Frenkel 1980). This problem in its turn is closely connected 
with the question about whether all the first-class constraints (primary or secondary) 
are generators of gauge transformations (Dirac 1964, Gitman and Tyutin 1983, Di 
Stefan0 1983, Sugano and Kamo 1982, Sugano 1982, Sugano and Kimura 1983). 

The present work is linked with the second of these controversial aspects. It is 
shown for a wide class of constrained dynamical systems in which there are only 
first-class constraints that all of these generate infinitesimal canonical transformations 
forming physically equivalent states. The meaning of equivalence accepted by us is 
the same as the one used by Dirac (1964): two points in the phase space (states) are 
considered as equivalent when they evolve from another point in a previous instant 
of time according to two total Hamiltonians coming from the same Lagrange system, 
i.e. they differ at most in the Lagrange multipliers of the primary first-class constraints. 
In obtaining this result we have appealed to some basic notions appearing in the papers 
of Sugano (1982) and Sugano and Kamo (1982). 
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In 0 2 we prove the possibility of giving a particular structure to a complete set of 
first-class constraints. This result is obtained for a wide class of systems which are 
specialised there. All the other results of the remaining sections concern this kind of 
system. 

In 5 3 a sufficient condition is developed for a linear combination of primary or 
secondary first-class constraints CC, to generate an infinitesimal canonical transformation 
mapping an extrema1 of the canonical action into another one. It follows that for the 
systems defined in 0 2 there always exists some CC, satisfying this condition. 

Section 4 contains the proof of Dirac's conjecture, i.e. the fact that all the first-class 
constraints (primary or secondary) generate equivalence transformations among phy- 
sical states. 

Finally in 0 5 an example is examined in detail in order to illustrate the main points 
exposed in the work. 

2. First-class constraint ordering 

We begin by presenting some basic definitions in Dirac's method. We start from the 
action 

where L is supposed to be a function of the coordinates q,, i = 1,. . . , N, and their time 
derivatives ql. The Lagrangian L is called singular if the Hessian matrix 

f f 1 ,  = a2L(q, q ) / a q ,  aq, 
has its rank M less than the number of degrees of freedom N. Then it is not possible 
to eliminate all the velocities q1 as functions of the momenta p l  by using solely their 
definitions 

PI = 4)/%#, i = 1,. . . , N. ( 2 )  

This situation implies the existence of m = N - M independent relations between the 
q1 and pl (primary constraints) of the form 

( P a ( %  P) = 0, a = 1,. . . , m. ( 3 )  

It will be supposed in what follows that the set of c p a  is complete in the sense of Dirac 
(1950): a system of constraint functions is complete when any function vanishing on 
the manifold spanned by all the points satisfying the set of constraints can be expressed 
as a linear combination (with (q, p)-dependent coefficients) of the constraint functions. 

Also, it is convenient to make precise our conception about a set of independent 
constraints. A collection of S constraint functions or conditions is independent if the 
set of points which satisfy simultaneously all the constraints is a manifold of dimension 
2 N - S  on the phase space. Henceforth the name 'constraint' will be conventionally 
used both for the constraint ,y = 0 itself and for the function x. 

Under the assumption of the completeness of the set of primary constraints, it can 
be proved that the Lagrange equations of motion are equivalent to the canonical 
equations following from the total Hamiltonian 

HT= H ( q , p ) + A " c p " ( q , p )  (4) 
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where A "  are the Lagrange multipliers to the primary constraints (3) (the summation 
over repeated indices is accepted throughout the paper). The Hamiltonian H ( q ,  p )  in 
(4) is defined as follows: 

H ( q , p ) = p i 4 , - L ( q ,  4 )  ( 5 )  

on the manifold P which is determined by all the primary constraints. Outside P the 
function H is defined in an arbitrary but analytical way. 

We concentrate now on proving the existence of a special type of complete set of 
constraints in the class of systems to be characterised below. 

Let a system be described by the total Hamiltonian (4) and suppose that Dirac's 
procedure for the determination of the multipliers and constraints is already performed. 
Suppose also that the resulting set 

FC={cpa ,a=l ,  . . . ,  m ; & k = l ,  . . . ,  j-) 

of all constraints contains only first-class ones and is complete in the above-mentioned 
sense. Then, the class of constrained systems to which the results presented here refer 
is fully specified by the condition that all the constraints arising in Dirac's procedure 
have been obtained only by forming linear combinations (with bounded (4, p)-depen- 
dent coefficients) of the consistency conditions. 

Under this definition, it follows that any of the first-class constraint functions of 
the problem can be expressed as a linear combination of the primary constraints and 
the repeated Poisson brackets of these with the Hamiltonian H. By a repeated Poisson 
bracket of A(q,  p )  with H we mean the function 

N q ,  P) = gn4q, P) (6) 

for some non-negative integer n. In (6) the linear operator 2 acting on a function 
f(q, p )  is given by the Poisson bracket off  with H: 

Moreover, the first-class nature of all the constraints of the system implies that H 
and cp" are first-class functions. Then it can be concluded also that all the repeated 
commutators of the cp" with H vanish in the manifold PG which is defined as the set 
of points satisfying all the constraints from FC. 

From this fact and the completeness of the set FC it follows that any repeated 
Poisson bracket of the pa with H is a linear combination of all the constraints defining 
FC. 

Consider now the collection of constraint functions constructed as follows: 

* : = p a  

(cl; = 2cp" 

$ ; ( a )  = gr(") cp" 

for each a = 1, .  . . , m. 
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It is clear from the above considerations that for some set of integers r ( a ) ,  
a = 1 , .  . . , m, the following relations must hold: 

m , ( a ' )  

a ' = l  n=O 
{ + : ( a ) ,  H ) =  g 2 ' ( a ) + l p a  = REa'(q, p ) $ : ' ( q ,  PI, a = 1, .  . . , m. ( 9 )  

After this, by selecting conveniently the numbers r ( a ) ,  it is always possible to include 
in the set of the $: all the repeated Poisson brackets of the pa with H through which 
any of the first-class constraints of the system is expressed as a linear combination. 
The set of the functions +: is complete but not necessarily independent. 

3. Generators which map solutions into solutions 

Let us show that in the class of problems defined in 9 2 there exists an infinitesimal 
linear combination of the first-class constraints E + ( q ,  p )  which generates a canonical 
transformation mapping an extremum of the action into another one; E is a constant 
infinitesimal parameter and + does not depend explicitly on time. 

From the first-class nature of + it follows directly that the manifold PG remains 
invariant under the canonical transformation induced by E+. 

Due to the fact that in the kind of systems considered here there are only first-class 
constraints, the Lagrange multipliers are in no way determined. But, from the very 
beginning the Hamiltonian H (  q, p )  is only defined in the manifold P traced out by 
the primary first-class constraints pa. Consequently, outside P there remains for H 
an arbitrariness in any linear combination of the pa. If changed within the range of 
this arbitrariness, H may be still considered as the total Hamiltonian of the system. 
This fact will be used in the following discussion. 

Let K (  q, p )  be the Hamiltonian which is obtained from H (  q, p )  by the transforma- 
tion produced by the generator E $  in some open neighbourhood EA of a trajectory. 
The coincidence of K and H will be required in all EA modulo a linear combination 
of the first-class primary constraints 9'. This condition ensures that the transformed 
trajectory corresponds also to an extremal. This is so, because the Hamiltonian changes 
only in a linear combination of the primary constraints and also all these continue to 
be satisfied if they were before. 

The new Hamiltonian K ,  after the transformation generated by E$, is given by 
(Goldstein 1950) 

(10) 
a+ 

K (  0, P )  = H ( q ,  P) + E ;  (4,  P) = H ( q ,  p )  

where the new variables ( Q ,  P )  are related to the old ones by 

QI = 41 + 4q1, $1, 

K ( q ,  P) = H ( q ,  P)+ E { $ ,  w. 

PI = p i  + 4P,, $1. (11) 

(12) 

Using (1 l ) ,  equation ( lo) ,  within the approximation linear in E ,  becomes 

In (10) and (12) the time derivative of 4 does not appear because $ was supposed 
not to depend explicitly on time. This assumption simplifies the discussion although 
it leaves sufficient generality for our needs. 

From (12) we see that the above-mentioned condition on $ can be written as 

{@, HI = u a ( q ,  P I P "  (13) 
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in the open neighbourhood EA of the trajectory. The fulfilment of (13) ensures that 
the transformed trajectories obey the same Hamiltonian equations coming from H. 
The above conclusion is valid because the only change introduced in the equations of 
motion consists in a modification of the arbitrary multipliers associated to the primary 
first-class constraints. It may also be argued that the existence of $ satisfying (13) 
implies that the transformation induced by it can be integrated out to a finite canonical 
mapping. The condition (13) was introduced previously by Sugano and Kamo (1982). 

Let us continue by showing the existence of the function + satisfying (13) for the 
systems defined in § 2. 

Let $ be expressed as a linear combination of the constraints $E given in (8) as 
follows: 

a = l  n = O  

By substituting (14) for $ in (13) one obtains 

Now, by using (8) and (9) in (15) one obtains 

By requiring that in EA each coefficient of the secondary constraints in 
the following equations for C:(q, p )  arise: 

16) vanishes, 

m 

{C: ,H)+C:- ,+ C;iar1R:'"=0,  n = 1, .  , . , r ( a ) ,  a = 1, .  . . , m, (17) 
a'=  1 

while the vanishing of the coefficients of the primary constraints pa results in the 
relation determining the functions wa,  

m 

{C,", H}+ C;[',,,R,"'" = wa.  
a'= 1 

Suppose now 4hat in (14) all the quantities C;(al are given in an arbitrary way as 
functions of ( q , p ) .  Then, for each a in (17), the coefficient C:-l can be found if Cz 
is known. Hence, every Cz (for any fixed a )  can be found by using successively 
equations (17) for the fixed value of a and decreasing values of n starting from n = r( a ) .  

In this way the desired result arises: the transformation + obeying (13) always 
exists for the class of systems under consideration and may be characterised by the 
set of arbitrary functions C;,,, of p and q, whose number is equal to that of the primary 
first-class constraints m. The latter statement will prove to be in agreement with Gitman 
and Tyutin (1985) after we show in § 4 that + performs an equivalence (gauge) 
transformation. 
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4. Dirac's conjecture 

Now that all the basic preliminaries have been given, it will be shown in this section 
that the canonical transformations which are generated by any linear combination of 
first-class constraints map points in the phase space into physically equivalent ones. 

By physical equivalence of the points (q, p )  and (9, P )  in the phase space we 
understand (following Dirac (1964)) that if the pair (q ,  p )  belongs to some solution C 
of the equation of motion, then the pair (0, P )  belongs to another solution C' ,  where 
C and C' satisfy the same initial conditions. 

Represent equation (17) as follows: 

c:,,,-1 = -%a)+ P,(c:(aJ 

c:(a)-n = (-l)"r2"C:(,)+ P*(c:(o) ,  r2c:(,),. . . , i f l - l C : ( , ) )  a = 1 , .  . . , m, (18 )  

c," = (-1)r'a'r2r'a'c;(a)+ Pr(a) (  c:,,,, k?:,,,, . * . , 2r(+1c:(aJ, 
where P,, are polynomial in their arguments. 

Consider now the field of directions F determined by the phase space vectors 

F = ( a H / a p , ,  - a H l a q , )  (19) 
and a point 9 = (q,  p )  through which a 'line of force' of the field F passes. This line 
of force c9incides with the trajectory passing through 9. 

Then X"C;,, ,  evaluated at the point 9 (supposed not to be a singular point of the 
field F )  is the n-fold derivative of C:,,, along the vector F in 9, i.e. the time derivative 
along the trajectory. 

Referring to the arbitrariness of the coefficient functions C:i,,(p, q )  on the phase 
space left by equation (13),  we can affix also arbitrary values to any number of their 
derivatives along F at the fixed point of the phase space 9. With these derivatives 
assigned, equation (18) allows us to calculate the coefficients C: at 9. Vice versa, 
once the set of numbers C:(,,), C:(a)-l,. . . , C,", which are the values of the correspond- 
ing coefficient functions evaluated in the given point 9, is given, the directional 
derivatives g"C:(,,), n = 1,2, .  . . , r ( a ) ,  may be found directly from (18 )  by a step-by- 
step procedure starting with the first equation (18),  gC:,,) = P,( C:( , ) )  - C:(a)-l, etc. 
Thus, we see that to fix the values of C: in a particular point it is sufficient to specify 
all the quantities C:(=)  and the finite number of their time derivatives along the trajectory 
in the same point 9. This means that outside any open neighbourhood of 9 in the 
phase space all the functions C:(,)( p ,  q )  remain completely arbitrary. In particular 
they may be defined as vanishing outside some open region containing the point 9. 
In this case outside this region the trajectory is not transformed by the generator +, 
and the latter canonically maps into one another trajectories which coincide in the 
past and future of the point 8 and its neighbourhood. 

Consider now any linear combination 6 of the first-class constraints of the system 

a = l  n = O  

Let 9 = ( p ,  q )  be a point which belongs to a solution C (trajectory) of the Hamiltonian 
problem (a physical state) required. In (20) the quantities 0; may also depend on a 
number of other parameters including the time. 
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The transformation induced by i3 is given by 

a = l  n = O  

a = l  n = O  

In obtaining (21) use was made of the fact that in the space restricted by all the 
constraints every + E  vanishes. As was seen before, a function E+ expanded as 

a = l  n=O 

with the basis functions it(: defined according to (8) can always be constructed in such 
a way that in a special point 9 all the quantities Cz coincide with the given set 0;. 
Furthermore, as was mentioned above, outside some open neighbourhood N of 9' all 
the Cz can be fixed to be zero. 

Hence, by noticing that the transformation induced by E+ at 9' coincides exactly 
with the one generated by i3 and also that E+ transforms extremals into extremals, we 
conclude that the transformed point (Q,  P )  belongs to another solution C' .  

Finally, by remembering that outside some open neighbourhood N of 9 we can 
make the function E+ vanish smoothly, it follows that C and C' may join smoothly 
together. Then the points (0, P) and (q,  p )  are physically equivalent. 

Thus, we have shown that, given any superposition of first-class constraints e( p,  q ) ,  
(20), and a point 9 belonging to a trajectory C, other superpositions + ( p ,  q )  subject 
to equation (13) may be found, such that e( 9) = +( P), which map canonically the 
trajectory C into any (physically equivalent) trajectories Cb, differing from C in our 
open neighbourhood of 9' and coinciding with C outside this neighbourhood. Simul- 
taneously, the point 9 is mapped by B ( p ,  q )  into a point 9', belonging to every C&.  
This does not imply that B(p,  q )  transforms a finite fragment of a trajectory into a 
fragment of a physically equivalent one. 

5. Example 

In this section we discuss an example which illustrates the main concepts appearing 
in this work. 

The system is defined by the Lagrangian 

= 4 1 4 3  + fq2(q:  - a') (23) 

PI = aL/a4l  = 4 3 ,  p 2 = a L / a g 2 = o ,  p 3  = aL/ag3 = gl. (24) 

(25) 

40=p2=0 (26 )  
defining the manifold P as the plane p 2  = 0 and satisfying the completeness condition. 

which gives the following canonical momenta: 

The Lagrange equations coming from (28) are 
2 

9 3  = 0, q3 - a* = 0, 41 = q 2 q 3 .  

From (24) it follows that there exists only one primary constraint 



636 A Cabo 

The Hamiltonian H is given by 
3 

H =  
i = I  

in P. Outside P it is 

H = PIP3 - 592(d  - a 2 )  + gP2 

with g = g( q, p )  being arbitrary. 
The total Hamiltonian is defined as 

&= H + ~ P 2 = P l P 3 - f q 2 ( q : - a 2 ) + g P 2 + ~ P 2 .  (29) 

{p21 HT}=f(q:-a2)=XIS0 (30) 

Applying the condition of consistency for p = p 2  we must have in P 

where = means equality in the points of P. 
From (30) it is clearly seen that xl is independent of cp = p 2 .  Both constraints satisfy 

the completeness condition in the manifold PI which is defined as the line of intersection 
of the planes p 2  = 0 and q: = a2 .  

Imposing again the consistency condition upon xl ,  one must have in P 

{XI, HT)=P1p3=x2=o. (31)  
The function x 2  is also a constraint independent of the previous ones. Together 

with them it forms a complete set in the intersection of the surfaces p 2  = 0, q: = u2  and 

At the next step the procedure finishes because the consistency relation for x2 

(32)  

which is automatically satisfied by virtue of (30) and (31). Thus, the procedure ends 
up  with the resulting set of constraints 

PI= 0. 

leads to 

{x2, HT} = PIPI == 0 

C p = p * = O ,  = f (  q: - U ’ )  = 0, x 2  = 43p1= 0,  (33) 
which are all first class in PG, i.e. in the manifold determined by the constraints (33) .  

The equations of motion generated by the total Hamiltonian are 

41 = P 3 r  PI = 0,  P 2  = 0, 

4 2  = A, 0 2  = t(4: - a*) ,  4:- U*  = 0, (34) 

q 3 = p 1 ,  P 3  = 4 2 q 3 3  43Pl = 0. 

From (34)  the following equations for the coordinates above can be extracted: 

91 = 4243, 9’ = A, q 3  = 0, q: - U’ = 0. (35) 
Equations (35)  are completely equivalent to the Lagrange equations (25) .  

Reciprocally letting q, satisfy the Lagrange equations (35) and defining p z  by (24), 
one sees that the canonical equations (34)  are also satisfied. Thus, the equivalence of 
the Lagrangian and Hamiltonian coordinates of the solutions is verified. On the other 
hand, the lack of equivalence among the coordinates corresponding to the Lagrangian 
and the extended Hamiltonian solutions (Cawley 1979) will be made explicit below. 
The extended Hamiltonian HE may be written as 

HE = HT+ gxl + ’ Y x 2  (36) 
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where u and y are new multipliers. From (36) we can obtain the following canonical 
equations: 

91 = P3,  P I  = 0, P2 = 0, 

4 2  = A, P 2  = f ( q :  - a*) ,  ;( q: - a 2 )  = 0, 

4 3  =PI, 0 3  = 4 2 4 3  - '+43 - Y, q3PI = O. 

From (37) the following equations for the coordinates can be deduced: 

91 = q 2 q 3  - aq3 - 7, 

9 3  = 0, 

9 2  = A, 

4:- a* = 0. 

(37) 

The relations (38) show clearly the inequivalence between the coordinates of the 

Let us now build the set of functions $" as follows: 
Lagrangian and  the HE Hamiltonian solutions. 

where g was taken as zero in (29 )  for simplicity. Thus, the generator $ can be written 
as 

44% P) = Cdq, P)P*' Cl(% P h :  - a 2 ) / 2 +  Cz(q9 P)q3Pl ( 4 0 )  

{$, HJ = up2 (41 )  

Cl = -{G, HI, C,={{C*, HI, H } - ( p , l q 3 ) C * ,  w =o.  (42 )  

upon which the condition 

is to be imposed. Substituting (40) in (41), the following equations are obtained: 

They show the existence of the solutions for the generator parametrised by the 
arbitrary function C,. Let us take now, for example, the secondary constraint (On(q, p )  = 
6 n 2 )  in ( 2 0 )  

P) = 93P1 (43) 
and construct the associated equivalence transformation (I/( q, p ) .  

In the point 9 one finds from the condition O ( 9 )  = $(S)  that 

C A S )  = 1 ,  (44) 
C,( 9) = CO( 9) = 0. (45) 

d C J d t  = 0, d2C2/dt2 = P l l q 3  (46) 
where the quantities dC2 /d t  and d2C2/d t2  are the values of the derivatives of the 
function C,(q( t ) ,  p ( t ) )  considered as a function of time along the solution C evaluated 
at  the time t9 corresponding to the point P. Equations (44)-(46) are the only restrictions 
imposed on the function C,(q, p )  by equation (41). They leave enough freedom for 
choosing the function C2 vanishing identically outside any open time interval contain- 
ing f9. The transformation generated by E+ (after fixing the function C,(q, p )  con- 
sistently with its values C2(t) along the curve C )  transforms 9 into a physically 
equivalent state. 

Then (42 )  implies that in the same point 9 
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Consider again a particular solution C of the problem. The variations in the 
coordinates in the transformation generated by E$, (40), can be written as follows 
(taking (42) into account): 

6% = { q 3 , 4 )  = 0. 
Then, by adding the increments (47) to the coordinates q l ( t ) ,  q 2 ( t )  and q 3 ( t )  of the 
solution, we obtain an equivalent solution C'. Substituting this into the Lagrange 
equations ( 2 5 ) ,  it may be easily checked that the coordinates of C' also satisfy the 
Lagrange equations. On the other hand, restricting (47) to (46), (44) we obtain that 
the transformation of the given point 9 induced by the generator J, is 6q2= 6q3=0 ,  
Sq, = &q3 and coincides with that induced by the chosen secondary constraint (43). 
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